Effect of UIT on Fatigue Life in Web-Gusset Welded Joints

نویسندگان

  • Yu TOGASAKI
  • Hirokazu TSUJI
  • Takashi HONDA
  • Tetsuya SASAKI
  • Atsushi YAMAGUCHI
چکیده

Ultrasonic impact treatment (UIT), which is a peening method, is usually used as a post-weld treatment in order to improve the fatigue strength of welded joints. In this study, fatigue tests were carried out on web-gusset welded joints treated by UIT and the results were compared with the fatigue lives of as-welded joints in order to examine the effects of UIT on the fatigue lives of welded joints. The fatigue lives of web-gusset welded joints treated by UIT increased to more than ten times those of as-welded joints. The introduction of compressive residual stress, relaxation of stress concentration at a weld toe, and refinement of grains under the weld toes were considered as possible reasons for the improvement in fatigue life caused by UIT. Residual stress near weld toes was measured using the X-ray diffraction method. The stress concentration factor at the weld toes was analyzed using the finite element method (FEM). The grain size under the weld toes was measured using electron backscatter diffraction pattern (EBSD) analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introductory fatigue tests on welded joints in high strength steel and aluminium improved by various methods including ultrasonic impact treatment (UIT)

This paper summarizes fatigue test on high strength steel specimens in the as-welded condition and specimens treated by ultrasonic impact treatment, TIG dressing and a combination of TIG dressing and ultrasonic impact treatment. Single lap joint specimens in 6 mm aluminium plate material were tested in the as-welded, hammer peened, needle peened and ground condition. Aluminium joints with longi...

متن کامل

Fatigue Life of Repaired Welded Tubular Joints

In this study, the effect of repair on fatigue life of tubular joints is investigated. Six cracked specimens precedently subjected to fatigue loading undergone to weld repair. Two of those specimens were shot peened before primary fatigue loading.  It is shown that repair gives rise to about 150% increase in fatigue life for original specimens while the increase of fatigue life for shot-peened ...

متن کامل

Fatigue Behaviour of CFRP Strengthened Out-of-Plane Gusset Welded Joints with Double Cracks

This paper investigates the fatigue behaviour of out-of-plane gusset welded joints strengthened with carbon fibre reinforced polymer (CFRP) laminates. Two notches were introduced at the weld toes adjacent to longitudinal plate ends to simulate the initial damage. Variables including the stress range, singleor double-sided strengthening and modulus of CFRP materials were considered. It was found...

متن کامل

Improving Fatigue Strength of Welded Joints by Ultrasonic Impact Treatment

Enhancement in fatigue performance of welded joints by Ultrasonic Impact Treatment (UIT) was evaluated with large-scale rolled beam and built-up specimens having yield strength of 345 to 760 MPa. Eighteen rolled-beam specimens having welded details at cover plates and transverse stiffeners and eight built-up specimens having only transverse stiffener details were fatigue tested after treating t...

متن کامل

Enhancing Fatigue Strength by Ultrasonic Impact Treatment

Enhancement in fatigue performance of welded joints by Ultrasonic Impact Treatment (UIT) was evaluated in large-scale specimens having a nominal yield strength of 345 to 690 MPa. Eighteen rolled-beam specimens having welded details at cover plates and transverse stiffeners and eight built-up specimens having only transverse stiffener details were fatigue tested after treating them by UIT. A par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010